The Cauchy problem and wave-breaking phenomenon for a generalized sine-type FORQ/mCH equation

نویسندگان

چکیده

In this paper, we are concerned with the Cauchy problem and wave-breaking phenomenon for a sine-type modified Camassa-Holm (alias sine-FORQ/mCH) equation. Employing transport equations theory Littlewood-Paley theory, first establish local well-posedness strong solutions of sine-FORQ/mCH equation in Besov spaces. light Moser-type estimates, able to derive blow-up criterion precise quantity Sobolev We then give sufficient condition respect initial data ensure occurance by trace along characteristics associated

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

On the Cauchy Problem for a Nonlinearly Dispersive Wave Equation

We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite time. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.

متن کامل

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

Exact Controllability of a Non-linear Generalized Damped Wave Equation: Application to the Sine-gordon Equation

In this paper, we give a sufficient conditions for the exact controllability of the non-linear generalized damped wave equation ẅ + ηẇ + γAw = u(t) + f(t, w, u(t)), on a Hilbert space. The distributed control u ∈ L2 and the operator A is positive definite self-adjoint unbounded with compact resolvent. The nonlinear term f is a continuous function on t and globally Lipschitz in the other variabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2021

ISSN: ['0026-9255', '1436-5081']

DOI: https://doi.org/10.1007/s00605-021-01633-6